Внимание! fresh-diplom.ru не продает дипломы, аттестаты об образовании и иные документы об образовании. Все услуги на сайте предоставляются исключительно в рамках законодательства РФ.

Заказать курсовую работу

КОНТРОЛЬНЫЕ РАБОТЫ
КУРСОВЫЕ РАБОТЫ
ОТЧЕТ ПО ПРАКТИКЕ
ДИПЛОМНЫЕ РАБОТЫ
КУРСОВОЙ ПРОЕКТ

   8-800-735-54-96

Материалы ядерной энергетики

Птицы (отряд: голуби, голенастые, дятлы)

Охотно пьют воду, причём не так, как другие птицы. Опустив клюв в воду, они всасывают жидкость, не поднимая после каждого глотка голову. В негнездовой период предпочитают держаться стаями. В кладке д

Правомерное поведение, правонарушение и юридическая ответственность

Новомосковск 2003г. ОГЛАВЛЕНИЕ. Введение........................................................................................................................ 3 I. Правомерное поведение.............

География цветной металлургии

Цветная металлургия занимает ведущее четвертое место (после топливной, машиностроения и пищевой) в структуре промышленности России, её доля – 10,1%. Это одна из самых экспортоориентированных отраслей.

Организация работы агрегатного участка комплекса ремонтных работ

Автомобили широко используются во всех областях народного хозяйства, выполняют значительный объем транспортных работ, а точнее служат для перевозки грузов и пассажиров. Автомобили имеют широкий спект

Мировая политика и международные отношения

Исаенко М. Г. Мурманск 2003 План : Введение…………………………………………………………………..3 1. Понятие, формы и типология международных отношений……….5 2. Механизмы формирования и тенденции развития международных отношени

Аудиторское заключение

Указанная бухгалтерская отчетность была подготовлена руководством Банка в соответствии с законодательством и нормативными актами, регулировавшими порядок ведения бухгалтерского учета и подготовки бухг

Безработица в РФ

Однако, пока не созданы эффективные механизмы использования трудовых ресурсов, возникают новые и обостряются старые проблемы занятости, растет безработица. Массовая бедность и социальная незащищеннос

Великая отечественная война на территории Беларуси 1941-1945гг.

Рабочие работали по 12-14 часов в сутки, людей бросали в концлагеря. В Белоруссии было создано больше 260 лагерей смерти. В каждом районе действовали концлагеря, тюрьмы, гетто. В 10 км. На восток от М

Скачать работу - Материалы ядерной энергетики

Безусловно, перспективны поиски и разработки новых источников энергии. К ним в первую очередь относится ядерная энергетика.

Использование ядерной энергии сдерживается не столько по соображениям надёжности ядерных реакторов, сколько из-за проблемы создания материалов, подходящих для использования в реакторах. Эти материалы должны удовлетворять следующим требованиям : 1. 2. Различные виды излучения, воздействуя на твердые тела, вызывают специфические радиационные дефекты. В настоящее время имеются многочисленные доказательства не только образования дефектов, но и изменения их вида, формы, скорости движения в процессе облучения. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ОЛУЧАЕМЫХ МАТЕРИАЛАХ. Изучая результаты радиационного повреждения в металлах, следует различать первичные и вторичные эффекты, в результате которых в облучённых материалах образуются дефекты, наблюдаемые экспериментально.

Первичным эффектом повреждения кристаллической решётки металлов радиацией следует считать передачу одному из атомов решётки достаточно большой кинетической энергии и одновременную передачу дополнительной энергии системе свободных и связанных электронов.

Возбуждённый атом (атом, получивший дополнительную кинетическую энергию) движется сквозь решётку, расталкивая атомы и, оставляет за собой след – область повреждения, которая состоит из смещённых атомов, окружённых облаком возбуждённых электронов. Таким образом, одним из результатов первичного эффекта взаимодействия ионизирующего излучения с веществом является образование вакантных мест в решётке и междоузельных атомов. Ко вторичным эффектам облучения, приводящим к наблюдаемым на практике радиационным дефектам определённой конфигурации, следует отнести движение и образование ассоциаций точечных дефектов. Этот процесс зависит от реальной структуры кристаллов (наличия нарушений кристаллической решётки, системы дислокаций, примесей и т. п.) и энергии, переданной системе свободных и связанных электронов. С этой точки зрения, нет никакой разницы в воздействии на вещество, например, быстрых нейтронов и квантов достаточно высока. В случае нейтронных потоков смещение атомов вызывают сами нейтроны, в случае : ассоциации вакансий и междоузельных атомов ; дискообразные скопления точечных дефектов, захлопывающихся в определённых условиях в петли дислокаций, и многие другие дефекты.

Увеличению подвижности точечных дефектов и атомов может способствовать и перераспределение относительной плотности свободных и локализованных электронов в микрообластях кристалла, возникающие как в результате образования радиационных дефектов, так и вследствие возникновения динамической дополнительной подвижности элементов системы. Как свидетельствуют опыты, значительно увеличивается подвижность атомов в зонах радиационных повреждений, создаваемых быстрыми заряженными частицами, осколками деления, либо ионизированными смещёнными атомами.

Динамика образования определённого сложного радиационного дефекта зависит от параметров подвижности атомов и дефектов в металлическом твёрдом теле в процессе облучения.

Немаловажное значение в увеличении подвижности дефектов, вероятно, играет и наведённое излучением электронное возбуждение, так как в области низких температур термодинамика предсказывает чрезвычайно низкие диффузионные характеристики атомов и дефектов, в то время как при облучении даже в области низких температур иногда наблюдаются ассоциации дефектов, которые могут образоваться только в результате диффузионного перемещения атомов либо дефектов. При достаточно высокой температуре, дефекты претерпевают ряд превращений : взаимно уничтожаются ; часть дефектов может выходить на поверхность металла или границы зёрен. Если дефекты адсорбируются дислокацией, то это приводит к закреплению последних. Если поглощённых дефектов много, они перемещаются вдоль линии дислокации и, собираясь вместе, образуют зубцы, тормозящие движение дислокаций. В результате поглощения дефектов дислокация закрепляется, упрочняется материал.

Точечные дефекты могут не только адсорбироваться дислокациями, но и объединяться, образуя дивакансии, тройные вакансии и комплексы вакансий. На дальних расстояниях вакансии не взаимодействуют, но при встрече они могут объединяться в прочный комплекс (его образование происходит с понижением энергии всей системы). Образованные поливакансии испытывают рост.

Отдельные вакансии, непосредственно сливаясь в плоскости слоя или образуя сначала сферические полости, которые в дальнейшем сплющиваются, переходят в своеобразные кольцевые дислокации.

Кольцевая дислокация может поворачиваться, подвижность её ограничена и носит диффузионный характер (дислокация может расти и уменьшаться в результате механизма переползания). Существенно важно, что кольцевая дислокация препятствует движению дислокаций обычного типа – краевых и винтовых.

Появление кольцевых дислокаций упрочняет металл. Такие кольцевые дислокации действительно наблюдаются с помощью электронного микроскопа. СМЕЩЕНИЕ АТОМОВ В КРИСТАЛЛИЧЕСКОЙ РЕШЁТКЕ ПОД ДЕЙСТВИЕМ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ. Рассмотрим теперь некоторые вопросы теории смещения атомов в результате воздействия радиации на кристаллическую решётку твёрдых тел. При упругом столкновении бомбардирующей частицы с атомом, последний в некоторых случаях приобретает энергию пороговой энергией смещения : вакансия – междоузельный атом. для обычных металлов находится в пределах 20 – 40 эВ. Если ~ ; при >> создаётся два, три или целый каскад дефектов такого же типа. Если кристаллическая решётка облучается потоком тяжёлых частиц, то энергия, получаемая атомом вещества, достигает больших значений, и вблизи конца пути первично выбитого атома среднее расстояние между соударениями в плотноупакованных кристаллических решётках должно быть приблизительно равно среднему межатомному расстоянию. В этом случае атом на пути первично выбитого атома смещается со своего места и образуется область сильного искажения, интерпретируемая как пик смещения. При облучении материалов нейтронами спектра реактора либо тяжёлыми частицами с большой энергией кристаллическая решётка испытывает огромное число элементарных повреждений.

Несмотря на отсутствие корректной теории, учитывающей коллективные процессы и совокупность взаимодействий в решётке, усреднённое число смещённых атомов можно оценить довольно точно с помощью очень простой модели, основанной на представлении о парных столкновениях. Одной из характеристик столкновения является энергия, передаваемая бомбардируемому атому. В зависимости от геометрических параметров столкновения (взаимного направления движения частицы и колебания атома) она может меняться от нуля, при столкновениях под очень малым углом, до максимальной величины определяется соотношением где Е и m – энергия и масса взаимодействующей быстрой частицы ; М – масса атома вещества. Для электронов с высокой энергией (Е >> 1 МэВ) следует учитывать релятивистские эффекты. В этом случае предыдущее выражение превращается в В случае столкновения с тяжёлой частицей высокой энергии можно ожидать возникновение каскада смещений.

Среднее число атомных смещений рассчитывается в простейшем случае по формуле где - плотность потока ионизирующего излучения ; t – время облучения ; число атомов в единице объема; d1 – сечение столкновений, вызывающих смещения; - средняя энергия, передаваемая атому быстрой частицей.

Величина Е d зависит от направления смещения относительно кристаллографических осей кристалла, что связано с анизотропией сил связи, а также от природы сил связи атомов в решетке.

Среднее число вторичных смещений , где f(n k ) – функция относительного числа электронов, участвующих в ковалентной связи, на один атом, f(n c ) – функция относительной концентрации свободных электронов на один атом.

Скорость возникновения радиационных дефектов где - сечение смещения.

Помимо точечных дефектов и их конфигураций, в электронном газе кристаллической решетки металла возникают локальные возбуждения (наводимые как самими дефектами, так и излучением), которые гипотетически могут оказать влияние на термодинамические контакты системы, либо ее нескольких участков. Это, в свою очередь, может привести к увеличению наблюдаемой подвижности вновь образованных радиационных точечных дефектов и существовавших до облучения дефектов кристаллического строения. Этим, отчасти, можно объяснить образование ассоциаций точечных дефектов в виде петель дислокации и кластеров под воздействием облучения даже в области низких температур. Весь спектр дефектов, наблюдаемых в металлических твердых телах после облучения с помощью методов электронной и ионной микроскопии, образуется из первичных радиационных дефектов – пар Френнеля – в результате их взаимодействия между собой и с существующими в материале дефектами кристаллического строения, а также под воздействием локальных возбуждений в электронной подсистеме кристаллической решетки, инициируемых после радиации . Рассмотренные эффекты, возникающие при смещении атомов в каскаде столкновений обычно называют нарушения смещения.

Совершенно иной тип нарушений связан с примесными атомами, введенными или в результате превращений ядер мишени, или вследствие того, что бомбардирующий ион тормозится в образце. Такие дефекты называются примесными нарушениями.

Впервые практические проблемы примесного нарушения возникли при изучении материалов для ядерных реакторов. Было обнаружено, например, что металлический уран, облученный при температуре, несколько большей 500 о С, существенно увеличивает свой объем.

Металлографическое исследование выявило в этом случае наличие в металле мелких пор, заполненных инертными газами.

Инертные газы в большом количестве образуются в реакторе при делении урана. Все эти нарушения очень сильно влияют на свойства материалов. МАТЕРИАЛЫ ДЛЯ ХРАНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ. Немалые трудности возникают также и с захоронением радиоактивных отходов.

Общепринятый подход к разработке материалов для этих целей состоит из трех стадий: 1. 2. 3. Для первой стадии применялись и применяются боросиликатное стекло и боросиликатная керамика.

Главное требование, предъявляемое к такой керамике – сильная поглощающая способность по отношению к ядерным частицам – нейтронам и - квантам. Из всех веществ наибольшей поглощающей способностью нейтронов обладают легкие элементы H, Li, B, но при поглощении нейтронов происходят ядерные реакции, результатом которых является вторичное излучение. По этой причине защитный материал должен содержать, наоборот, тяжелые элементы, главным образом свинец, поскольку поглощение N=N 0 e -2d a , где N и N 0 – плотность d – плотность ослабляющего вещества; a - коэффициент поглощения.

Применение чистого свинца оказывается нецелесообразным из-за его значительной текучести под влиянием даже собственного веса защитной кладки, состоящей из свинцовых кирпичей. Более эффективными - защитными материалами являются PbO и более сложные оксиды типа 2PbO, PbSO 4 . Они обладают высокими плотностями, достаточно высокими рабочими температурами и технологичны в процессах изготовления порошка, при прессовании и спекании. До прессования эти оксиды смешивают с борсодержащими веществами, например с В 2 О 3 , с карбидом бора В 4 С или с боратидами МеВО 3 и боридами типа МеВ или МеВ 2 какого-либо металла Ме, дающего, в свою очередь, низкий уровень вторичного Но керамика из боро - и свинцово-содержащих веществ имеет много недостатков.

Основной из них – пониженная химическая стойкость.

оценка комнаты в Смоленске
оценить ресторан в Курске
экспертная оценка строительства в Твери